

EFB+ • StartStop Motion

WILLARD® BATTERIES

Rooted in the hearts of South Africans, **Willard® Batteries** combines technology and a quest for perfection to bring you a battery of unrivalled standing.

Our **Willard**[®] product range is manufactured in Port Elizabeth. With a presence in SA since the 1920s, local production started in 1954. Today, the factory still reflects the true South African spirit of combining imported state-of-the-art technology with solid South African ingenuity and know-how.

Over the years, **Willard**[®] **Batteries** has built a strong track record of service excellence and has maintained the core attributes of the brand that has helped define it: its values, its culture and the long-term relationships it has built with its customers. In the future, **Willard**[®] **Batteries** is looking to continue to build and live its brand legacy as it strengthens its bonds with both its suppliers and its customers.

DEFINITIONS OF AUTOMOTIVE BATTERIES

VENTED (FLOODED) BATTERY

This is the most common of automotive battery types. This type of battery has a cover with one or more openings through which gas generated by the battery may escape. The battery has "free" electrolyte which means that the acid moves freely within the battery.

SEALED MAINTENANCE FREE BATTERY (SMF)

Some specifications use the term "maintenance free" to describe a battery that has a water loss below a certain level. SMF batteries are flooded batteries that have a mechanism for water to condensate and return to the battery.

ENHANCED FLOODED BATTERY (EFB)

Enhanced Flooded Batteries were developed for use in stop-start vehicles. EFB's are specifically designed for stop-start loads, where the battery has to crank the engine several times more, due to frequent stop events, and must have enough capacity to run vehicle loads while the engine is not running.

VALVE REGULATED (VRLA)

A battery that is closed under normal conditions and has an arrangement that only allows gas to escape if the internal pressure exceeds a predetermined value. In this type of battery, the electrolyte is immobilised. This mean that the acid is held in either a gel or a glass mat structure.

- A. AGM (Absorbed Glass Mat) is a special design glass mat designed to wick the battery electrolyte between the battery plates. If the battery is broken, no free liquid can leak out.
- B. Gel Cell batteries contain a silica type gel that the battery electrolyte is suspended in; this thick paste like material allows electrons to flow between plates but will not leak from the battery if the case is broken.

The valve regulated battery is often called a sealed battery because no addition of electrolyte or water is possible.

TERMINOLOGY

1. Capacity: is the ability of a fully charged battery to deliver a specific quantity of electricity (current in amperes) over a definite period of time in minutes or hours.

2. Reserve Capacity: (Cr, n) (Minutes) is the time in minutes a fully charged battery will supply 25 ampere continuously before the voltage falls to 10,5 volts. This rating represents the time in minutes which a fully charged battery would continue to supply the average (25 ampere) should the Alternator fail.

3. Cold Cranking Performance: (CCA) is the cold temperature discharge (-18°C) that a fully charged battery can supply current in ampere over a predetermined period before the voltage drops below a specified end-point. The various standards are as follows:

BATTERY RATINGS - ABBREVIATIONS

SANS South African National Standard 1.4 volts per cell (or 8.4 volts on a 12 volt battery) after 60 seconds

SAE (BCI) Society of Automotive Engineers 1.2 volt per cell (7.2 volts on a 12 volt battery) after 30 seconds

BATTERY PERFORMANCE

Optimum performance

Fanbelt drives alternator.

13.8V - 14.3V Alternator generates power. Voltage regulator turns the valve.

Battery acts as storage tank.

Malfunctions in the system

Fanbelt slips.

Iternator fails to generate sufficien power. Voltage regulator set too low.

Battery runs down.

B

Or the opposite

Everything is operating normally. The alternator generates power. Above 14.4V But the regulator releases too much power into the battery.

The battery overheats and malfunction:

BATTERY TEST PROCEDURE

Out of Vehicle Test		Perform in Vehicle - Test if required
Select Battery Type		
Regular		Starter System Test
AGM		Charging System Test
Select Battery Standard for SAE		
CCA EN IEC SAE DIN		 Use Battery Diagnostic Tester. Refer to operating manual for decision and interpretation of results.
Select Battery Rating		
Battery performs test:		
Battery Test Results		
Decision	Interpretation	
GOOD BATTERY	Return the battery to service.	
GOOD RECHARGE	Fully charge the battery and return it to service.	
CHARGE & RETEST	Fully charge the battery and retest. Failure to fully charge the battery before retesting may cause inaccurate results. If CHARGE & RETEST appears again after you fully charge the battery, replace the battery.	
REPLACE BATTERY	Replace the battery and retest. A REPLACE BATTERY result may also mean a poor connection between the battery cables and the battery. After disconnecting the battery cables, retest the battery using the out-of-vehicle test before replacing it.	

- Refer to Operating Manual.

VOLTAGE	САРАСІТҮ	STATE OF CHARGE (S.O.C)	RESULTS
12.8 V	100%	Charged	Good Battery
12.6 V	100%	Charged	Good Battery
12.4 V	75%	Discharged	Charge & Retest
12.2 V	50%	Discharged	Charge & Retest
12 V	25%	Over Discharged	Charge & Retest
11.8 V	0%	Over Discharged	Charge & Retest

 $\supset \supset \bigcirc 05 \land \langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$

POST ABUSE INDICATORS

Look out for the following signs:

Follow the steps below:

Caution: Certain vehicles such as BMW, Mercedes Benz and Audi, require that a slave battery or alternative electrical supply be connected before removing and installing a new battery:

- Damage to the vehicle's electronic management system.
- · Loss of all electronic management system coding for radios, windows, seats etc.

JUMP START GUIDE

1

When connecting the booster cables. In both cars, set handbrakes; turn off all switches, and place gear selector in Neutral or Park position.

STEP 1: Connect one cable to the positive (+) post of the discharged battery.

Discharged

STEP 2: Connect other end of the same cable to the positive (+) post of the booster battery.

Booster

Booster 3 + +

STEP 3: Connect the second cable to the negative (-) post of the booster battery.

Ensure all booster cable connections are secure.

The engine of the stalled vehicle may now be cranked Discharged

STEP 4: Make final connection of the second cable on engine block or chassis of stalled vehicle

Δ

STEP 5: To remove cables, reverse this exact procedure.

BATTERY CARE & MAINTENANCE

For a battery to remain in good working order, it should be maintained in a fully charged state by the vehicle's charging system. Where a battery is used as a means of alternative power, it is generally charged by means of an independent charger or rectifier which supplies controlled direct current (DC). An independent charger is also used to charge motor batteries that have become discharged due to faulty alternators, charging systems or if left unused for prolonged periods. If the following hints are adhered to, a battery will provide extended and trouble-free service.

WHAT TO DO

- Store batteries in a clean and dry area (in order to prevent deterioration).
- Store batteries in a fully charged state. (12V Battery above 12.6V).
- Ensure a correct polarity connection when recharging and fitting.
- Follow proper recharging schedules to prevent overcharging. Ensure charging is conducted in a well ventilated area.
- Ensure that the battery is always clean and dry, with the terminals coated with petroleum jelly (Vaseline) or proprietary terminal protectors. Do not use greases which may contain metal additives.
- NB: Practice stock rotation and use a first-in, first-out system at all times.
- Always wear protective clothing when working with batteries.

WHAT NOT TO DO

- Do not store batteries in a discharged state.
- Do not test batteries by shorting across terminal posts with wire, spanners, etc.
- Do not allow open flames or sparks near a battery as it could explode (batteries give off flammable gases).
- Do not use a single spanner to use loosen or tighten the terminal clamp as this could damage to post lid seal. Use a spanner to the nut and a second spanner to the bolt.
- Do not use the starter motor to propel the vehicle or leave the vehicle parked with accessories switched on for extended periods.
- Do not lean over a battery when charging or testing.
- Do not put any metal objects on top of a battery.

BATTERY SAFETY TIPS

SULPHURIC ACID (SULPHURIC ACID EMERGENCY PROCEDURES)

- Skin contact: Immediately drench the affected area with clean water and remove any contaminated clothing. If any soreness or irritation persists seek medical advice.
- Eye contact: Immediately wash out the eyes with clean water until initial burning subsides. Do not use eye drops but do seek prompt medical attention.
- Ingestion: D0 N0T induce vomiting but make patient drink as much water or milk as possible, followed by milk of magnesia, beaten eggs or vegetable oil and seek immediate medical attention.
- Spillage: Small spillages can be quite simply dealt with by rinsing away with plent of water and neutralising using Bicarbonate of Soda mixed with water (10 grams Bicarb to 1 litre water).
- Burns: Apply a dry sterile dressing and seek medical attention.

SULPHURIC ACID HANDLING TIPS

Sulphuric acid (H_2SO_4) is contained in batteries. Battery acid is a poisonous and corrosive liquid, which will cause burns and irritation to the skin and eyes. Take precautions when charging as sulphuric acid is given off in a fine mist.

- Always handle batteries with care and keep upright.
- Disposal: Suitably labelled, acid resistant containers should be used for transporting, neutralising and disposal of sulphuric acid.
- Use eye protection and protective clothing where there is any risk of acid splashing or spillage.
- Keep, charge, check and test batteries in a well ventilated area.
- Do not place tools or conductive objects on top of batteries.
- Before using a battery charger consult manufacturer's literature.
- Remember to switch the charger off before connecting or disconnecting the battery.

EMISSION OF GASES

Hydrogen and oxygen can be generated and emitted. An explosive atmosphere is created if the concentration of hydrogen in air exceeds 4%.

- Keep, fill, charge, check and test batteries in a well ventilated area.
- Avoid sources of ignition close to batteries. In particular: No smoking. No naked flames. Switch off current before making or breaking electrical connection. Avoid sparks caused by accidental short circuits.

EMERGENCY PROCEDURE FOR TREATING ELECTRIC SHOCKS

- Electric Shock: Immediate action is essential in cases of severe electrical shock as the nerves controlling breathing and heart action may be affected. Do not delay treatment by calling for a doctor; this should be done quickly if help is available or when the casualty recovers.
- Make sure it is safe to approach casualty. If the casualty is not clear of the electric source, switch off the power. If this is not possible, attempt to separate the casualty from the conductor using a dry, insulating object (wood, rubber, brick, thickly folded newspaper, cardboard) and try to push or pull the casualty clear of contact. Do not touch casualty with bare hands.
- Apply artificial respiration if necessary. Seek medical attention thereafter.
- Explosion: Seek any necessary medical attention and remember that sulphuric acid may have been ejected.

ELECTRICAL ENERGY HANDLING TIPS

Electrical energy can be supplied from batteries and charging equipment.

- * Burns may occur from the heating effect of tools and conductive objects in contact with live battery terminals or conductors. In addition, sparks and molten metal may be ejected and co bustible materials, notably the gaseous fumes, ignited to cause potentially lethal explosions.
- * It is possible to receive a severe electric shock from charging equipment and from a number of batteries connected in series i.e. five or more 12 volt batteries (+60 volt nominal).
- Before using conductive tools on a battery, remove metallic personal adornments from the hands and wrists.
- Before working on a vehicle's electrical system, blow across the terminals and the vent holes to disperse any fumes and disconnect the battery where there is any risk of accidental short circuits. Always disconnect the earth terminal from a battery first and connect it last to prevent short circuiting.
- Use eye protection and protective clothing where there is any risk of acid splashing or spillage.

BATTERY BAY SETUP

TEST & CHARGE EQUIPMENT **REQUIRED:**

Eve Protection

Battery Charger

Battery Analyser

Work Bench

Acid Proof **Overall**

Safety Gloves

Safety Shoes

SAFETY **EQUIPMENT:**

TOOLS:

Terminal Cleaner

Jumper Cables

Booster Pack

Required Spanners/ Size 10 and 13

Shifting Spanner

Hack Saw

RELATED **ACCESSORIES:**

Battery Hold Downs

J-Bolts

Positive & Negative Cable

Positive & Negative Terminal Clamps

BATTERY SPECIFICATION SHEET

= -																																					
Specia feature		2,4	2,4	2,4	1,4			1,4	1,4	1,4	2,4	2,4	2,4	2,4	1,4	2,4	2,4	2,4	1,4	2,4	2,4	2,4	2,4	2,4	1,4	1,4	1,4	1,4	1,4,5	2,4	2,4	2,4	1,4,5	1,4,5	1,4,6	1,4,5	1,4,5
Container hold down		B5	B5	B5	B3	BO	BO	B3G	B3	B3	B5	BG	B5	B5	B13	BG	B6	B6	B13	BG	B5	B5	B5	B5	B3	B3	B3	B3	B4	BO	BO	BO	B3	B3	B3	B3	B3
Terminal layout		A	A	A	A	8	8	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
Cell layout		S	S	4	4	5	4	4	4	4	4	4	S	S	4	5	4	S	S	4	5	5	4	4	S	5	4	4	4	4	S	4	4	4	4	4	5
Overall height mm		204	212	212	190	225	225	175	175	175	212	204	212	204	175	203	203	203	175	203	212	205	212	205	190	190	190	190	175	225	220	220	175	190	190	175	190
Overall width mm		173	173	173	175	134	134	175	175	175	173	173	173	173	175	134	134	134	175	134	173	173	173	173	175	175	175	175	175	171	173	173	175	175	175	175	175
Max length mm		255	255	255	208	200	200	208	208	208	255	255	255	255	242	241	241	241	242	241	255	255	255	255	242	242	242	242	278	230	307	307	278	278	278	355	278
IEC CCA Amps	Light	360	360	360	310	252	252	270	270	270	410	310	410	310	335	280	280	355	335	355	485	410	485	410	395	360	395	360	460	450	565	565	460	500	480	600	564
SAE CCA Amps		370	370	370	325	270	270	285	285	285	415	323	415	323	345	295	295	360	345	360	480	413	480	413	400	368	400	368	460	450	550	550	460	495	476	585	550
DIN CCA Amps		220	220	220	190	150	150	165	165	165	250	189	250	189	205	170	170	215	205	215	295	250	295	250	240	219	240	219	280	260	340	340	280	305	293	365	340
SANS CCA Amps		255	255	255	220	170	170	190	190	190	290	216	290	216	240	200	200	250	240	250	345	290	345	290	280	253	280	253	325	320	400	400	325	355	341	425	400
Reserve Capacity Minutes		17	17	17	69	52	52	50	50	50	85	69	85	69	62	50	50	62	62	62	109	82	109	82	06	80	60	80	91	97	125	125	91	106	102	127	110
20 Hr Capacity Ah		50	50	50	45	35	35	36	36	36	55	45	55	45	43	36	36	45	43	45	70	50	70	50	55	50	55	50	60	65	80	80	60	70	65	80	70
Willard Cover		Flat	SMF	SMF	S	Flat	Flat	CV,Euro	SMF	CV,Euro	SMF	Flat	SMF	Flat	SMF	Flat	Flat	Flat	SMF	S	SMF	Flat	SMF	Flat	SMF	cv	CV, Euro	S	SMF	Flat	Flat	Flat	SMF	SMF	S	S	SMF
SABMA Number		610	610	611	612	615	616	618	619	619	621	621	622	622	629	630	631	634	635	636	638	638	639	639	643	643	646	646	647	649	650	650S	651	652	652	654	657

D ∑∑ 14 ⟨⟨⟨⟨

BATTERY SPECIFICATION SHEET

	_															_		-												_						_
Special feature	1,4,6	1,4,5			1,4,5	1,4,5		2,4,5	2,4,5	2,4,5	2,4,5			2,4,5	2,4,5, S1	2,4,5, S1	2,4,5, S1	2,4,5, S1	2,4,5	2,4,5	Q	വ	Q	Q	2,4,5, S1	2,4,5, S1	2,4,5	2,4,5	2,4,5		2,4,5	2,4,5	2,4,5	2,4,5		
Container hold down	B 3	B3	B 3	B3	B3	B3		BO	BO	BO	BO	B01	B01	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO	BO		
Terminal layout	A	A	A	A	A	A		A	A	A	A	A	Threaded Post	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
Cell layout	ŝ	4	ŝ	4	4	ŝ		ŝ	ŝ	ŋ	4	4	4	ŝ	9	9	7	7	9	9	9	9	7	7	9	9	7	9	9	9	9	ß	ŋ	4	4	4
Overall height mm	190	190	175	190	190	190		226	226	226	226	238	238	277	240	240	240	240	214	214	248	248	248	248	230	230	230	230	230	242	230	208	208	226	264	264
Overall width mm	175	175	175	175	175	175		175	175	175	175	172	172	175	190	190	190	190	190	190	275	275	275	275	224	224	224	224	224	274	224	173	173	175	175	175
Max length mm	278	355	307	393	315	315	Ŀ.	345	345	345	345	330	330	345	510	510	510	510	510	510	515	515	515	515	512	512	512	512	512	518	512	255	255	345	345	345
IEC CCA Amps	500	650			610	610	Heavy Dut	615	670	740	615			715	765	765	765	765	860	860	1400	1400	1400	1400	975	975	975	1065	1065		1220	360	485	560	560	740
SAE CCA Amps	494	630	650	006	590	590		600	650	710	600	800	800	069	735	735	735	735	810	810	1300	1300	1300	1300	925	925	925	1005	1005	1400	1140	370	480	550	550	710
DIN CCA Amps	305	395			370	370		375	410	450	375			435	465	465	465	465	515	515	906	006	006	006	590	590	590	645	645		745	220	295	330	330	450
SANS CCA Amps	356	460			430	430		440	479	525	440			510	545	545	545	545	605	605	1050	1050	1050	1050	690	690	690	755	755		870	255	345	400	400	525
Reserve Capacity Minutes	110	164			135	135		136	170	180	136			155	216	216	216	216	225	225	450	450	450	450	265	265	265	331	331		360	75	109	136	136	180
20 Hr Capacity Ah	70	06	80	110	80	80		90	100	105	06	105	105	110	120	120	120	120	120	120	210	210	210	210	140	140	140	165	165	240	180	50	70	06	06	105
Willard Cover	C	C	Euro	Euro	CV, Euro	CV, Euro		Flat	SMF	SMF	Flat	SMF	SMF	SMF	SMF	Flat	SMF	Flat	Flat	SMF	SMF	Flat	Flat	SMF	Flat	SMF	Flat	Flat	SMF	Flat	SMF	C	S	C	Flat	SMF
SABMA Number	657	658	659	660	668	699		671	671	671	674	674 C	674 CS	675	680/3	680/3	681/2	681/2	685	685	687	687	688	688	689	689	069	692	692	695	969	722	738	774 CV	791	791

 $\sum \sum \frac{15}{\sqrt{3}}$

DEPENDABLE IS A 7 LETTER WORD.

And that 7 letter word is Willard.

9 Tonnes of precious cargo. Another eight hours to reach your destination. Out on the open road you need a reliable battery to get you there on time. Every time. With Willard Batteries you can depend on the power of the technology to share some of your load.

